Very-large-scale integration (VLSI) is the process of creating integrated circuits by combining thousands of transistor-based circuits into a single chip. VLSI began in the 1970s when complex semiconductor and communication technologies were being developed. The microprocessor is a VLSI device. The term is no longer as common as it once was, as chips have increased in complexity into the hundreds of millions of transistors.
The first semiconductor chips held one transistor each. Subsequent advances added more and more transistors, and as a consequence more individual functions or systems were integrated over time. The first integrated circuits held only a few devices, perhaps as many as ten diodes, transistors, resistors and capacitors, making it possible to fabricate one or more logic gates on a single device. Now known retroactively as "small-scale integration" (SSI), improvements in technique led to devices with hundreds of logic gates, known as large-scale integration (LSI), i.e. systems with at least a thousand logic gates. The same process led to ICs with thousands of devices, becoming LSI. Current technology has moved far past this mark and today's microprocessors have many millions of gates and hundreds of millions of individual transistors.
As of mid-2006, billion-transistor processors are just on the horizon, with the first being Intel's Montecito Itanium Server. This is expected to become more commonplace as semiconductor fabrication moves from the current generation of 90 nanometer (90 nm) processes to the next 65 nm and 45 nm generations.
At one time, there was an effort to name and calibrate various levels of large-scale integration above VLSI. Terms like Ultra-large-scale Integration (ULSI) were used. But the huge number of gates and transistors available on common devices has rendered such fine distinctions moot. Terms suggesting more-than-VLSI levels of integration are no longer in widespread use. Even VLSI is now somewhat quaint, given the common assumption that all microprocessors are VLSI or better.